U-Pb ages of detrital and volcanic zircons of the Toro Negro Formation, northwestern Argentina: Age, provenance and sedimentation rates

William H. Amidon, Patricia L. Ciccioli, Sergio A. Marenssi, Carlos O. Limarino, G. Burch Fisher, Douglas W. Burbank, Andrew Kylander-Clark
Año de la publicación: 
2 016
Journal of South American Earth Sciences - Volume 70, October 2016, Pages 237–250
The Toro Negro Formation is a foreland sequence in western La Rioja province, Argentina, which records the late-stage tectonic evolution of the Vinchina Basin. Together with the underlying Vinchina Formation, these two units represent one of the thickest and longest continually exposed foreland sections in northwest Argentina. The Vinchina basin is uniquely situated between the Toro Negro and Umango blocks of the Western Sierra Pampeanas to the north and south, the Precordillera to the west, and the Sierra de Famatina to the east. New U-Pb dating of volcanic tephra provides improved age constraints on the pace of sedimentation, and U-Pb ages of detrital zircons serve to strengthen existing provenance interpretations. We show that deposition of the Toro Negro Formation spans roughly 6.9 to 2.3 Ma: Late Miocene to Early Pleistocene. A high-relief, erosional unconformity with the underlying Vinchina Formation developed sometime between 9.3 and 6.9 Ma, although stratigraphic considerations suggest it spanned only the later part of this time interval (perhaps 7.5–6.9 Ma). Above this unconformity, undecompacted sedimentation rates are remarkably high at ∼1.2 mm/yr, slowing to ∼0.3 mm/yr after ∼6 Ma. An unconformity in the upper part of the section is constrained to occur sometime between 5.0 and 3.0 Ma, probably beginning not long after 5.0 Ma. The timing of both unconformities broadly Matches the timing of inferred tectonic events in the Sierra Famatina ∼50 km to the east, the Fiambalá basin to the north, and the Bermejo basin to the south, suggesting they May record regional tectonism at these times. Provenance interpretations of detrital zircon spectra are consistent with previous interpretations based on sediment petrography. They show that provenance did not change significantly during the course of Toro Negro deposition, precluding major tectonically-induced drainage reorganization events. Sediments were derived primarily from the north (Toro Negro Block) and west (Precordillera). The data are consistent with a subtle increase in sediment supply from the Precordillera beginning around 6.5 Ma.