Jul Roldán GUEVARA, Eduardo A. ROSSELLO, Sergio Adrián LÓPEZ-ISAZA, Carlos MARISCAL
2 024
Geociências, v. 43, n. 2, p. 281 - 310, 2024
The Amotape Group consists of metasedimentites with varying degrees of metamorphism and Paleozoic intrusions, exposed as isolated blocks that form an NNE-SSW belt, separating the Meso-Cenozoic depocenters of the Talara (west) and Sechura and Tumbes basins (east) along the Pacific margin of NW Peru. We describe three metamorphic/tectonic episodes that produced sub-planar structures (cleavages, fractures) affecting the rocks of the Amotape Group, allowing this unit to be classified as a fractured reservoir. Field survey and multi-scale subsurface data from the Colán Block, evidence a secondary porosity system associated with fracture networks that affect both the basin fill and the basement units. This configures a complementary unconventional exploration target. Sandstone levels in lateral contact with leptometamorphic rocks of the Amotape Group define good reservoir potential due to the preferentially brittle mechanical behavior of the basement, which develops abundant fractures. The porosity values of the Amotape Group range between 4.62% and 1.23%, while permeabilities are on the order of 0.519-0.016 mD. Elevated trapping positions seem to be successfully sealed by Cretaceous units. The reservoir properties define a complementary play concept that could be extended to other positions of the technical basement in the Talara Basin and analogous regions.
Camila Santonja, Cecilia A. Benavente, Julieta Suriano, Arturo M. Heredia, Natalia Fortunatti, Ana L. Rainoldi, Diego A. Kietzmann, Florencia Bechis
2 024
The depositional record. Volume 10, Issue 3 June 2024
Facies, microfacies and stable isotope analyses of limestone beds in the northernmost Ñirihuau Basin, North Patagonian Andes, Argentina, document and constrain the past hydrological, sedimentological and climate conditions that prevailed during the deposition of a lacustrine system between ca 15 and 13 Ma. This palaeoenvironment is recorded in the middle section of the Ñirihuau Formation, which holds significance because: (1) It was deposited during a transition from an extensional to a compressional tectonic regime; (2) it spans the Middle Miocene Climatic Optimum and the beginning of the Middle Miocene Climatic Transition; and (3) it contains limestone beds interbedded within a 600 m thick interval of mudstones and siltstones, along with intercalated sandstone and volcaniclastic bodies. Two detailed sedimentary logs were surveyed along the Arroyo Las Bayas, at the western and eastern flank of the David Syncline. Limestones from both stratigraphic sections were sampled as well as isolated limestone beds from two other sites. One facies association was defined and interpreted as a perennial lake associated with a deltaic system and dominated by detrital clastic material. It comprises Facies 1 (Marginal lacustrine) and Facies 2 (Lower delta plain); in both, the presence of grainstones and calcimudstones stands out. Through petrography and cathodoluminescence studies of these continental carbonates, nine microfacies were identified: (a) Intraclastic grainstone, (b) Homogeneous calcimudstone, (c) Silty grainstone, (d) Disrupted micrite, (e) Birds eye micrite, (f) Bioclastic mudstone, (g) Calcimudstone with sparse detrital grains, (h) Fenestral micrite, (i) Stromatolitic boundstone. These indicate mainly bio-induced subaqueous carbonate precipitation and subordinate deposition by tractive flows with short-distance transport on a littoral lacustrine environment. Most of these microfacies exhibit very early diagenesis (eogenesis) effects. These features, and the geochemistry results, indicate that they were deposited in a palaeolake system under temperate to warm and humid conditions.
Mesosaurs were small amphibious tetrapods that lived in western Gondwana during the Early Permian or even earlier, when temperate Permo-Carboniferous conditions initiated after the glaciations that affected the southern region of Pangea. In this contribution, we applied traditional linear regression morphometrics to analyse proportions of both the skull and limb bones in more than 100 mesosaur specimens. The analyses revealed that all mesosaur bones scale remarkably close to a model of geometrical similarity (isometry), and that this pattern is particularly strong in long bones and also in the skull. These results indicate that juvenile and adult mesosaurs do not display appreciable change in bone proportions, meaning that there are few or no noticeable differences between them during growth. The well-defined isometry, and particularly, the high interrelation between metatarsals and phalanges permit us to suggest that the mesosaur hind limb is subject to notable modularity. This evidence strongly argues that the differences previously described to support three mesosaur species in Western Gondwana, might instead reflect natural intraspecific variability, taphonomic features or even possible sexual dimorphism, as recently suggested. Our study also reinforces the general plesiomorphic structure of the mesosaur skeleton, which along with some cranial specializations for ecological fitness and the evidence of strong isometric growth as we demonstrate herein, may suggest new hypotheses of relationships for mesosaurs which thus would position them as more basal amniotes than previously thought.
Andrea Coronato, Ana María Borromei, Juan Federico Ponce, Soledad Candel, Lorena Musotto, Marilén Fernández, Cecilia Laprida, Adriana Mehl, Alejandro Montes, Cristina San Martín, Adolfina Savoretti,
Gabriela Cusminsky, Sandra Gordillo, María Julia Orgeira, Ramiro López, Pamela Alli, Diego Quiroga
2 022
Journal of South American Earth Sciences Volume 119 , November 2022
Environmental changes were reconstructed from a multiproxy synthesis of over 30 localities from the Isla Grande de Tierra del Fuego and Isla de los Estados, southernmost South America. At a local scale, the results from the mountain forest and gently undulating steppe areas were integrated as well as those from the marine environments of the Beagle Channel and the Atlantic coasts. At a regional scale, the results were integrated with those published for the southernmost Andean and Extra-Andean Patagonia and the Antarctic Peninsula. This study focuses on the environmental evolution during the Late Glacial-Holocene transition, the Middle to Late Holocene transgressive-regressive hemicycle and wet-dry oscillations, the Medieval Climate Anomaly, the Little Ice Age, the tephra inputs from the Patagonian Andes, and the recent climatic warming. Most paleoenvironmental changes are related to variations in the latitudinal position and intensity of the Southern Westerly Winds (SWW) while others are associated with astronomical or endogenous forcings. At a strong intensity of the SWW, a greater contribution of humidity to the forest areas and an increase in the rainfall gradient create windy and arid conditions in the steppe. At a weak intensity of the SWW, lower humidity input in the forest areas and the advection of air masses from the Atlantic Ocean promoted humid and slightly windy conditions in the steppe. Similar environmental trends are observed between terrestrial and marine environments in the center and south of Tierra del Fuego, Isla de los Estados and the Antarctic Peninsula, and between the Fuegian steppe and Extra-Andean Patagonia. The paleoclimatic evidence reveal high environmental variability in the last 10,000 years for this sector of the Southern Hemisphere.
M.E. Benítez, C. Prezzi, C.A. Ballivián Justiniano, S.O. Verdecchia, F.J. De Martino, M. Carlini, M.E. Lanfranchini
2 023
Journal of South American Earth Sciences Volume 121 , January 2023
The Martín García Complex, which crops out at the homonymous island of the Río de la Plata Estuary, is composed of intermediate to silicic orthogneisses and granitoids, hornblende and olivine gabbros, and felsic dykes of Paleoproterozoic and Mesoproterozoic ages, as well as serpentinized ultrabasic rocks of unknown age. A major part of this igneous-metamorphic basement is covered by sediments and vegetation, hiding the relationships between the different rock units, and hindering their study. Therefore, a ground magnetic survey and the consequent 3D geophysical modeling were conducted to elucidate the geometry of the ultrabasic bodies in the subsurface. Normal and reverse dipolar sub-circular and elongated (∼ENE-WSW) magnetic anomalies were identified. It is proposed that Cr-rich spinels would be responsible for some of the detected magnetic anomalies. Our results suggest the existence of three magnetic units with a dyke-type geometry, all of them with ∼ENE-WSW trend and steep dip. The magnetic survey and 3D modeling allowed us to confirm the continuity and extension in the subsurface of the ultrabasic bodies cropping out discontinuously on the surface. According to their crosscutting relationships, a post-Stenian age is proposed for these rocks. Magnetic patterns identified in Martín García Island are similar to those observed in western Uruguay, suggesting that the Martín García Complex would be part of the Piedra Alta Terrane (Río de la Plata Craton).
Salvó Bernárdez, Salomé; Zabala Medina, Peter; Limarino, Carlos; Bonomo, Néstor; Osella, Ana
2 022
Aeolian Research Vol 54 (2022)
The fluvial-aeolian interaction field of the Guandacol valley (northwest Argentina) is studied through different methodologies that comprise satellite, drone and GPR images, bedform descriptions, and grain-size analysis. The obtained information allowed the recognition of five depositional subenvironments: 1. Dune patches; 2. Aeolian sand sheets; 3. Muddy plains; 4. Active channels; and 5. Abandoned and secondary channels. Moreover, the lithofacies pattern, sedimentary structures and geometry of the beds permitted the definition of ten architectural elements in both channel and interchannel areas. The channel architectural elements comprise active channels with intercalations of aeolian deposits (CHe), abandoned or secondary channels (CHa), aeolian sand ramp (CHsr), lateral bars (CHlb), and aeolian mesoforms (CHem). The architectural elements in the interchannel area include active dunes (Fad), fixed or low-migration rate dunes (Fsd), partially flooded interdunes (Ffd), sandy flats (Fsf), and muddy plains (Fmp). A model of the evolution of fluvial-aeolian interaction environment is proposed in which three types are recognized: dry, intermediate, and wet. Migratory dunes and sand sheets environments dominate the dry interaction systems in the floodplain (Fad, Fsf). At the same time, during the intermediate stage, Fsd and Fsf architectures prevail, together with fluvial bars with thin aeolian intercalations into the channels (CHe and CHa). The wet systems consist of flooded interdunes, muddy plains, and different types of aeolian mesoforms in the channel (Fmp, Ffd and CHem). The analysis of present-day depositional subenvironments in the Guandacol valley and the definition of architectural elements serve as a potential analogue for studying ancient fluvial-aeolian interaction environments.
Sebastián Oriolo, Bernhard Schulz, Mathias Hueck, Pedro Oyhantçabal, Florian Heidelbach, Graciela Sosa, Alfons van den Kerkhof, Klaus Wemmer, Haakon Fossen, Elena Druguet, Jens Walter, Carolina Cavalcane, Siegfried Siegesmund
2 022
Earth-Science Reviews 234 (2022)
The concepts of progressive and polyphase deformation have been widely applied by structural geologists to explain complexly deformed rocks, particularly for ductile conditions. Interpreting complex structural patterns as the result of progressive deformation is mainly based on structural and kinematic evidence, applying the Ockham’s razor principle: single-phase progressive deformation is the simplest and thus most plausible explanation in many cases. Processes such as strain partitioning and localization are commonly considered to explain such patterns. In this contribution, guidelines to distinguish between progressive and polyphase deformation processes are presented, mainly based on a critical discussion of advantages and pitfalls of P-T-D-X-t (pressure – temperature – deformation – composition – time) data. Such information not only allows for a robust reconstruction on the timing and rates at which deformation operates, but also provides insights into the progressive or polyphase evolution of pressure-temperature conditions and fluid flow. For example, complex structural patterns are common in transpressional and transtensional settings, particularly (but not only) for non-steady progressive deformation, which seems to be the rule in nature. Consequently, assessing the structural and microstructural context is a must, because analytical data commonly record only distinct stages in the protracted evolution of deformation. CPO data are useful to disentangle complex structural histories, particularly in the case of changing deformation mechanisms and related conditions. For petrochronology, it is thus highly relevant to understand equilibrium conditions and mechanisms of intracrystalline deformation and (re)crystallization of dated minerals, in order to properly link the obtained ages with specific deformation stages and mineral reactions. In a similar way, structural facies characterization is critical to interpret geochronologic data linked to ductile and brittle deformation. Though poorly explored, microstructural information of fluid inclusion data is a valuable tool to understand the role of fluids in deformation-assisted settings. The recognition of phases is ultimately related to their tectonic significance and, therefore, may not be easy in cases of overlapping tectonic processes (e.g., subduction during a post-collisional phase) and transitional stages that may not necessarily imply a dramatic change in the deformation pattern (e.g., post-orogenic collapse and intracontinental rifting).
Victor Manuel Velasco Herrera, Eduardo Antonio Rossello, Maria Julia Orgeira, Lucas Arioni, Willie Soon, Graciela Velasco, Laura Rosique-de la Cruz, Emmanuel Zúñiga and Carlos Vera
Strong earthquakes (magnitude ≥7) occur worldwide affecting different cities and countries while causing great human, ecological and economic losses. The ability to forecast strong earthquakes on the long-term basis is essential to minimize the risks and vulnerabilities of people living in highly active seismic areas. We have studied seismic activities in North America, South America, Japan, Southern China and Northern India in search for patterns in strong earthquakes on each of these active seismic zones between 1900 and 2021 with the powerful mathematical tool of wavelet transform. We found that the primary seismic activity patterns for M ≥ 7 earthquakes are 55, 3.7, 7.7, and 8.6 years, for seismic zones of the southwestern United States and northern Mexico, southwestern Mexico, South American, and Southern China-Northern India, respectively. In the case of Japan, the most important seismic pattern for earthquakes with magnitude 7 ≤ M < 8 is 4.1 years and for strong earthquakes with M ≥ 8, it is 40 years. Every seismic pattern obtained clusters the earthquakes in historical intervals/episodes with and without strong earthquakes in the individually analyzed seismic zones. We want to clarify that the intervals where no strong earthquakes do not imply the total absence of seismic activity because earthquakes can occur with lesser magnitude within this same interval. From the information and pattern we obtained from the wavelet analyses, we created a probabilistic, long-term earthquake prediction model for each seismic zone using the Bayesian Machine Learning method. We propose that the periods of occurrence of earthquakes in each seismic zone analyzed could be interpreted as the period in which the stress builds up on different planes of a fault, until this energy releases through the rupture along faults and fractures near the plate tectonic boundaries. Then a series of earthquakes can occur along the fault until the stress subsides and a new cycle begins. Our machine learning models predict a new period of strong earthquakes between 2040 ± 5 and 2057 ± 5, 2024 ± 1 and 2026 ± 1, 2026 ± 2 and 2031 ± 2, 2024 ± 2 and 2029 ± 2, and 2022 ± 1 and 2028 ± 2 for the five active seismic zones of United States, Mexico, South America, Japan, and Southern China and Northern India, respectively. In additon, our methodology can be applied in areas where moderate earthquakes occur, as for the case of the Parkfield section of the San Andreas fault (California, United States). Our methodology explains why a moderate earthquake could never occur in 1988 ± 5 as proposed and why the long-awaited Parkfield earthquake event occurred in 2004. Furthermore, our model predicts that possible seismic events may occur between 2019 and 2031, with a high probability of earthquake events at Parkfield around 2025 ± 2 years.
Las concentraciones naturales de fósforo y nitrógeno en las lagunas pampeanas permiten el desarrollo de densas praderas de vegetación acuática sumergida, el dominio de fitoplancton o plantas acuáticas flotantes. En las últimas décadas, la eutrofización de las lagunas aumentó con el avance de labores agrícolas, fertilización de campos y el stock ganadero. La turbidez que producen las floraciones fitoplanctónicas inhibe el crecimiento de macrófitas sumergidas y el fitoplancton domina. Este es el caso de la laguna de Lobos, que por más de 20 años se mantuvo como una laguna turbia orgánica con predominio de cianobacterias. Estudiar el metabolismo ecosistémico aporta gran información sobre el modo en que el estado trófico de la laguna contribuye a la producción, respiración y metabolismo neto, con posibles consecuencias para la biota acuática. Aquí presentamos una evaluación del metabolismo en esta laguna a partir de los cambios en la concentración de oxígeno disuelto, estimado para otoño y primavera. La producción bruta de la laguna fue menor y menos variable en otoño (1.57±1.33 g O2.m-2.día-1) que en primavera (20.45±18.00 g O2.m-2.día-1). Si bien la producción fue alta durante el día, la respiración también fue elevada —incluso, la superó— sobre todo en primavera, cuando fue mayor la densidad de organismos planctónicos, principalmente cianobacterias. Por ello, el metabolismo neto tuvo valores bajos o negativos. Esta situación de gran consumo de oxígeno se acentuó en el período de mayor temperatura y de menor profundidad de la laguna, que coincide con la mayor concentración de clorofila-a y de material particulado, y la menor transparencia del agua. Concluimos que la laguna fue predominantemente heterotrófica durante el período que duró el estudio. De mantenerse las altas concentraciones de nutrientes es probable que aumenten los factores que producen estrés y sus consecuencias negativas para la fauna acuática.
Pampean shallow lakes naturally have water nitrogen and phosphorous concentrations that allow the development of dense beds of submerged aquatic vegetation, phytoplankton, or free-floating aquatic plants. In recent years, the eutrophication of these shallow lakes has increased due to the intensification of agriculture, use of fertilization and livestock. Phytoplankton- induced turbidity inhibits the growth of the submerged aquatic vegetation leading to phytoplankton dominance. This is the case of the Lobos shallow lake, which in a period greater than 20 years has remained as an organic turbid shallow lake, with cyanobacteria dominance. The study of the ecosystem metabolism can give relevant information about how the trophic state of a shallow lake drives production, respiration and net metabolism, and the potential consequences for aquatic biota. We evaluated the Lobos shallow lake metabolism using diel changes in dissolved oxygen concentrations during autumn and spring. Gross primary production showed lower values and variability in Autumn (1.57±1.33 g O2.m-2.day-1) than in Spring (20.45±18.00 g O2.m-2.day-1). Although there was high production during the day, respiration was also high, especially in Spring, where there was higher density of planktonic organisms principally cyanobacteria, exceeding net production in both seasons. Thus, we found mainly low or negative values for the net metabolism in Lobos shallow lake. A high oxygen consumption occurred during spring and at the lowest depth, coinciding with the highest chlorophyll-a concentrations, particulate matter, and lowest water transparency. We conclude that Lobos shallow lake was predominantly heterotrophic during study period. High nutrient concentrations will likely increase the factors that produce stress and negative impacts on aquatic fauna.
Boletín de Geología, vol. 44, n.° 3, septiembre-diciembre de 2022
La perforación del pozo hidrogeológico Alejandrina a los 209 m bbp, muy por debajo de la profundidad habitual de los pozos de agua de la zona, alcanzó un nivel areniscoso de la Formación Zapallal con contenido gasífero inesperado que determinó un fuerte venteo, licuefacción de la plataforma de perforación, colapso del equipo de perforación y la contaminación de los niveles tradicionalmente productores del acuífero confinado. Para mitigar esta invasión de gas y surgencia a superficie, se perforaron los pozos: i) de alivio Papayal, para efectuar maniobras de captura y cementación donde se requirieron 5 intentos de perforación direccional hasta interceptar el pozo Alejandrina y ii) exploratorio Curumuy 1X para disminuir la presión de la invasión de gas y conocer sus posibles orígenes anormales a esas profundidades tan someras. El objetivo del trabajo es informar la estratigrafía de este sector potencialmente exploratorio con probada presencia de recursos de gas de la cuenca Sechura y describir la secuencia de acontecimientos de la interferencia en el manejo y producción entre los recursos hidrogeológicos y gasíferos que comparten los mismos reservorios areniscosos de la Formación Zapallal. Para ello, se aportan datos petrofísicos a partir de los registros de perforación de los pozos Alejandrina, Papayal y Curumuy 1X y un modelo simulado de carga y manejo del gas responsable de la contaminación. De esta manera, se presenta un caso de interferencia de objetivos del subsuelo con la intención de preservar y restablecer el comportamiento de los pozos productores del acuífero y a la vez producir gas.
The drilling of the Alejandrina hydrogeological well at 209 m bbp, below the usual depth of water wells in the area, reached a sandy level of the Zapallal Formation with unexpected gas content that caused strong blow-up, venting, liquefaction of the ground, collapse of the drilling equipment and contamination of the traditionally producing levels of the confined aquifer. To mitigate this invasion of gas and it upwelling to the surface, the following wells were drilled: i) Papayal interference well, to carry out capture and cementing maneuvers with 5 horizontal attempts until intercepting the Alejandrina well, and ii) Curumuy 1X exploratory well to reduce the pressure of the gas invasion and discover its possible abnormal origins at such shallow depths. The objective of the work is to present the stratigraphy of this potentially exploratory sector with proved gas resources of the Sechura basin and to describe the sequence of events of the interference in the management and relationships between the hydrogeological and gas resources that share the same sandstone reservoirs of the Zapallal Formation. For this, petrophysical data are provided from the drilling records of the Alejandrina, Papayal and Curumuy 1X wells and a simulated model of loading and handling of the gas responsible for the contamination. In this way, a case of interference of different subsoil objectives is presented with the intention of preserving and reestablishing the behavior of the producing wells of the aquifer and at the same time producing gas.